Go Full-Screen with NGSS: A Model for Teaching with Video

Robert Wallon, Hillary Lauren, Chandana Jasti, and Barbara Hug
University of Illinois
• How did you use video the last time you taught with it?
Goals for Session

• Introduce Project NEURON
• Compare examples of using video to engage students in scientific practices
• Plan applying ideas to your classroom practice
What is Project N EURO N?

- Curriculum development
 - Inquiry
 - Connect to standards

- Professional development
 - Summer institutes
 - Conferences
• **Do you see what I see?**
 – *Light, sight, and natural selection*

• **What can I learn from worms?**
 – *Regeneration, stem cells, and models*

• **What makes me tick...tock?**
 – *Circadian rhythms, genetics, and health*

• **What changes our minds?**
 – *Toxicants, exposure, and the environment*
 – *Foods, drugs, and the brain*

• **Why dread a bump on the head?**
 – *The neuroscience of traumatic brain injury (TBI)*

• **Food for thought: What fuels us?**
 – *Glucose, the endocrine system, and health*

• **What makes honey bees work together?**
 – *How genes and environment affect behavior*

• **How do small microbes make a big difference?**
 – *Microbes, ecology, and the tree of life*

Available at: neuron.illinois.edu
Let’s start with an example...

- Take notes on the video.
- [https://www.youtube.com/watch?v=lE-8QuBDkkw]
Another example…

- What do honey bees do?
- Record your observations of honey bee behavior.
- Write questions about what you observe.
Comparison

Video 1

Video 2
“Many schools, technology developers, and researchers now use technology to ‘enhance’ education by making the achievement of traditional objectives more efficient.” (Pea, 1993)
Dimension 1: Scientific & Engineering Practices
1. Asking questions
2. Developing/Using models
3. Planning/Carrying out investigations
4. Analyzing & interpreting data
5. Using math, information and computer technology, and computational thinking
6. Constructing explanations
7. Engaging in argument from evidence
8. Obtaining, evaluating, communicating information

Dimension 2: Crosscutting Concepts
1. Patterns
2. Cause and Effect
3. Scale, Proportion, and Quantity
4. Systems and System Models
5. Energy and Matter
6. Structure and Function
7. Stability and Change

Dimension 3: Disciplinary Core Ideas
1. Physical Sciences
2. Life Sciences
3. Earth and Space Sciences
4. Engineering, Technology and Applications of Science
Your turn to try!

- Videos in folders on laptops
• On back of your index card,
 – What is one specific idea for using video to engage your students in scientific practices?
Acknowledgements

• NIH, SEPA
• University of Illinois

This project was supported by SEPA and the National Center for Research Resources and the Division of Program Coordination, Planning, and Strategic Initiatives of the National Institutes of Health through Grant Number R25 RR024251-03. The contents of this presentation are solely the responsibility of Project NEURON and do not necessarily represent the official views of the funding agencies.
Contact Us

Web Site:
http://neuron.illinois.edu

E-mail:
Rob Wallon
rwallon2@illinois.edu
Hillary Lauren
lauren1@illinois.edu
Chandana Jasti
cjasti@illinois.edu
Barbara Hug
bhug@illinois.edu