Engaging students in developing and using models: using clay models to visualize action potentials.

Natasha Capell: Unity High School
Barbara Hug: University of Illinois
Session overview:

• Project NEURON overview
• Nervous system unit
• Modeling action potential activities
• Discussion & sharing of student work
What is Project NEURON?

- Educators, scientists, and graduate students
- Curriculum development
 - Inquiry-based
 - Connect to standards
- Professional development
 - Summer institutes
 - Conferences
Project NEURON: A Collaborative Process

- **Science Educators (Project NEURON)**
 - Initial unit planning
 - Developing lessons
 - Modify/revise materials based on feedback

- **Scientists (UIUC)**
 - Initial unit planning
 - Provide feedback on lesson content

- **Teachers (High School Science)**
 - Initial unit planning
 - Enact lessons in the classroom
 - Provide feedback
An Iterative Development Process

- Determine main understanding goals and develop unit outline
- Develop and revise lesson plan and student materials
- Teachers provide feedback (based on workshops and classroom enactments)
- Scientists provide feedback
• **Do you see what I see?**
 – *Light, sight, and natural selection*

• **What can I learn from worms?**
 – *Regeneration, stem cells, and models*

• **What makes me tick...tock?**
 – *Circadian rhythms, genetics, and health*

• **What changes our minds?**
 – *Toxicants, exposure, and the environment*
 – *Foods, drugs, and the brain*

• **Why dread a bump on the head?**
 – *The neuroscience of traumatic brain injury (TBI)*

• **Food for thought: What fuels us?**
 – *Glucose, the endocrine system, and health*

• **What makes honey bees work together?**
 – *How genes and environment affect behavior*

• **How do small microbes make a big difference?**
 – *Microbes, ecology, and the tree of life*

Available at: neuron.illinois.edu
What changes our minds?
Food, drugs, and the brain.

- **Lesson 5:**
 What are the effects of drugs on the nervous system?
- **Lesson 6:**
 How do neurons communicate?
- **Lesson 7:**
 How do drugs affect neuron communication?
Why dread a bump on the head?
The neuroscience of traumatic brain injury

• Lesson 1:
 What is traumatic brain injury?
• Lesson 2:
 What does the brain look like?
• Lesson 3:
 How does a CT scan help diagnose TBI?
• Lesson 4:
 How to build a neuron
• Lesson 5:
 What happens to neurons after TBI?
• Lesson 6:
 Exploring the data behind brain injury
• Lesson 7:
 What can we tell others about TBI?
A Framework for K-12 Science Education

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Asking questions</td>
<td>1. Patterns</td>
<td>Core Idea LS1: From Molecules to Organisms: Structures and Processes</td>
</tr>
<tr>
<td>5. Using math, information and computer technology, and computational thinking</td>
<td>5. Energy and Matter</td>
<td></td>
</tr>
<tr>
<td>7. Engaging in argument from evidence</td>
<td>7. Stability and Change</td>
<td></td>
</tr>
<tr>
<td>8. Obtaining, evaluating, communicating information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Today’s activity

Part 1: Build a model of a presynaptic and postsynaptic cell.

Part 2: Simulate an action potential using your model.

Part 3: Model the possible effects that different drugs have on the nervous system.

Work in groups of 3-4
Part I: Building the model (15 minutes)

• Using the laminated cards as a guide:
 – build the axon and an axon terminal of a presynaptic cell, and the dendrite of a postsynaptic cell.
 – build the transport proteins
 – build ions, and vesicles

• Split up work!
Part II: Simulate an action potential (15 minutes)

• Use your model to show what happens during an action potential. You need to include what is happening during each phase (depolarization, repolarization, refractory period).

• Include how the presynaptic cell communicates with the postsynaptic cell (what happens at the synaptic cleft).

• Use your smartphone/tablet to make a video of an action potential.
Part III: Model how different drugs effect neuron communication (5 minutes)

- Use your model to predict what happens when different drugs are introduced to the nervous system:
 - Nicotine
 - Hexamethonium
Discussion

• Could you use this lesson in your classroom?
 – Why or why not?

• Where might your students struggle?
• How could you support them?
Acknowledgements

• NIH, SEPA
• University of Illinois
 – Project NEURON

This project was supported by SEPA and the National Center for Research Resources and the Division of Program Coordination, Planning, and Strategic Initiatives of the National Institutes of Health through Grant Number R25 RR024251-03. The contents of this presentation are solely the responsibility of Project NEURON and do not necessarily represent the official views of the funding agencies.
Thanks!

For additional information visit: http://neuron.illinois.edu

E-mail: capelln@unity.k12.il.us neuron@illinois.edu