Exploring Human-Microbe Interactions

Chandana Jasti, Sara Adamek, Barbara Hug
University of Illinois
N A BT Atlanta, G A
What is Project NEURON?

• NIH, SEPA
• Educators, scientists, and graduate students
• Curriculum development
 – Inquiry-based
 – Connect to standards
• Professional development
 – Summer institutes
 – Conferences
Project NEURO N Curriculum Units

• Do you see what I see?
 – Light, sight, and natural selection

• What can I learn from worms?
 – Regeneration, stem cells, and models

• What makes me tick...tock?
 – Circadian rhythms, genetics, and health

• What changes our minds?
 – Toxicants, exposure, and the environment
 – Foods, drugs, and the brain

• Why dread a bump on the head?
 – The neuroscience of traumatic brain injury (TBI)

• Food for thought: What fuels us?
 – Glucose, the endocrine system, and health

• What makes honey bees work together?
 – How genes and environment affect behavior

• How do small microbes make a big difference?
 – Microbes, ecology, and the tree of life

Available at: neuron.illinois.edu
How do small microbes make a big difference?

- **Lesson 1:**
 How did the tree of life change through history?

- **Lesson 2:**
 What is the current tree of life model?

- **Lesson 3:**
 What do microbial communities look like?

- **Lesson 4:**
 How do microbes interact with humans?

- **Lesson 5:**
 What happens when my microbiome is disturbed?
Connections to Framework and NGSS

• Disciplinary core ideas:
 – Interdependent relationships in ecosystems
 – Ecosystem dynamics, functioning, and resilience
 – Biodiversity and humans
*Note: This unit addresses these DCIs in the context of microbiology and human-microbe interactions.

• Practices:
 – Developing and Using Models
 – Analyzing and Interpreting Data

• Crosscutting concepts:
 – Cause and effect
 – System and system models
 – Stability and change
What is modeling?

- Modeling...
 - is a way to represent a complex system.
 - is used to describe, explain, and/or make predictions
 - takes many forms
 - is a way to make student thinking visible
 - a process (model-ING)
 - opens opportunities for questioning, reasoning, advancing understanding
Analyzing & Interpreting Data

- Data from published science papers
- Experience with primary literature
- Analyzing and interpreting data – an authentic experience

Lesson 4:
How do microbes interact with humans?

Working in groups of 4-6...develop a model of the human microbiome.

How would you answer this question?

How would your students answer this question?
Lesson 4: How do microbes interact with humans?

Objectives:

• Explain why the diversity of microbes in/on the human body is important.

• Describe how microbes can protect humans.

• Discuss the mutualistic relationships between microbes and humans.

• Analyze and interpret data from recent scientific research.

• Construct a model of the human microbiome.
Lesson 4: How do microbes interact with humans?

Step 1:
Develop initial model

Step 2:
Become “experts” by reading and analyzing data

Step 3:
a) Report & discuss findings
b) Develop revised model based on new information
Jigsaw Activity: Today

• Become an expert! Each person pick a different reading.
 – Microbes that affect our body weight
 – Our skin microbiome
 – Microbes educate immune cells
 – Intestinal microbiota development in infants
 – Microbes and the blood-brain barrier
 – Using microbes as treatment of bacterial infection

• As you read think about...
 What roles do microbes play in/on our bodies?
What roles do microbes play in/on our bodies?

• Report and discuss your articles’ findings.

• Using this new information, how would you revise your model of the human microbiome?
A baby is born with little to no intestinal microbiota. What the baby is fed and what type of anti-microbials they are given will greatly effect the development of its intestinal microbiome.

Microbes in your gut help you digest your food. Microbes also help your gut by having some bacteria breaking down complex sugars we use for energy. Our gut has many different mutualistic relationships with microbes.

Research has shown that staphylococcus epidermidis is present in overwhelmingly great quantities on the skin of healthy people. (purple). S. epidermidis then must somehow out compete bacteria for space and resources, providing a protective “shield” from potentially harmful microbes.
Lesson 5: What happens when my microbiome is disturbed?

Objectives and activities:

– What is a microbiome disturbance?
 • Introduce ecological disturbances and modeling

– Case study of recurrent *C. difficile* infections
 • How do microbial communities recover?
 • Analyze data to develop models and make predictions about affects of disturbance on microbiome
 • Determine and defend a treatment plan

– Comparison of treatment methods
 • Analyze information and construct an explanation
 • Microbiome’s resilience is linked to diversity
Activity 1: What is a Microbiome Disturbance?

- Introduce ecology concepts
- Analyze data
- Create models

Before the antibiotic

After the antibiotic

- Microbes that need thiamine
- Microbes that make their own thiamine
• Students become interns at CMW Hospital
 – High number of patients with recurrent *C. difficile* infections
• Students help researchers analyze the data from a clinical trial of a new antibiotic
• Students choose an antibiotic for the hospital
 – Argue from evidence
• Students educate administrators on the effectiveness of different *C. difficile* treatments
Activity 2: Case Study

Goals:

• Students analyze real data from a clinical trial

• Students use the data to develop and revise a model of antibiotic effects on the gut microbiome

• Students use the model to support a claim
Comparison of *Clostridium difficile* counts before, during, and after antibiotics

![Graph showing comparison of Clostridium difficile counts](image)

Looking at the graphs, suggest an explanation for why researchers saw higher levels of recurrence in the Vancomycin group compared to the Fidaxomicin group.

Claim, Evidence, Reasoning

- An explicit process where students make a claim, support it with evidence and link the two through reasoning.

McNeill and Krajcik (2012), Supporting grade 5-8 students in constructing explanations in science: The claim, evidence, and reasoning framework for talk and writing.
Claim: Fidaxomicin is better suited for the treatment of C. Difficile than Vancomycin.

Evidence:
- Fidaxomicin levels were closer to health than Vancomycin (mutualistic microbes: at day 40, F ≈ 95, V ≈ 75, H ≈ 95)
- Less recurrence of C. difficile than Vancomycin (at day 40, V ≈ 4.5, F ≈ 3)
- Fidaxomicin dips 1 unit, Vancomycin dips 4

Reasoning:
- Vancomycin is a broad spectrum antibiotic.
 - Kills Good and Bad microbes
 - There aren't enough good to outcompete the bad.
 - The good microbes eventually return, but fidaxomicin's return quite quickly.
Activity 3: Treatment Comparison

How does an antibiotic disturbance compare to a fecal transplant disturbance?

Fecal Transplant:
1. The mutualistic microbes from the healthy donor help the infected patient by giving them more healthy microbes to fight off C. diff by helping them out compete the infection.
2. Rely's on the resistance of the gut's ecosystem.
3. The infected patient ends up getting more of the healthy microbes than when they started.
4. The treatment increases the diversity of microbes.

Antibiotic:
1. The mutualistic microbes that are left after treatment, help fight off the remainder of C. diff, even though they are not many left.
2. Rely's on the resiliency of the gut's ecosystem.
3. The infected patient not only ends up with less of the C. diff, but the antibiotics also kills off some of the healthy microbes.
4. The treatment decreases the diversity of microbes.

Both treatments help fight off the C. diff infection.

Disturbance of the ecosystems are not the same. It will most likely have same kind of patient should consider is cost, whether or not to certain antibiotics or microbes, and also timing for the transplant is a good match for.
Fecal Transplant vs. Fidaxomicin

Before
- Mutualistic bacteria helps us digest food, but can not when it is over run by infection.
- **C. difficile**

Fidaxomicin
- Kills off both C. difficile and mutualistic bacteria.

After
- Fidaxomicin introduces more mutualistic bacteria overcoming the C. difficile.

The disturbances caused by Fidaxomicin are bad, and Fecal transplants just add more healthy microbes.

Poop transplant
- Poop transplants begin to over run the C. difficile.
Unit Discussion

• How would you support students in:
 – Explaining why diversity in a microbial community is important
 – Discussing the mutualistic relationships between microbes and humans
 – Analyzing and interpreting data
 – Constructing and revising models

• How could you use these lessons in your class?
 – To teach content?
 – To teach scientific practices?
 – To teach crosscutting concepts?

• How would you possibly modify it for your students?
Acknowledgements

- SEPA, NIH
- University of Illinois
- Whitaker lab group
- Kristen Talbot
- Sahid Rosado

This project was supported by SEPA and the National Center for Research Resources and the Division of Program Coordination, Planning, and Strategic Initiatives of the National Institutes of Health through Grant Number R25 RR024251-03. The contents of this video are solely the responsibility of Project NEURON and do not necessarily represent the official views of the funding agencies.
Thanks!

For additional information visit:
http://neuron.illinois.edu

E-mail:
neuron@illinois.edu