Evidence, evaluations, and explanations through neuroscience

NABT 2013 in Atlanta
Hillary Lauren, Chandana Jasti, Barbara Hug -- University of Illinois
What is Project NEURON?

• Curriculum development
 – Inquiry-based
 – Connect to standards

• Professional development
 – Summer institutes
 – Conferences

• Educators, scientists, and graduate students
Project NEURON Curriculum Units

- **Do you see what I see?**
 - Light, sight, and natural selection

- **What can I learn from worms?**
 - Regeneration, stem cells, and models

- **What makes me tick...tock?**
 - Circadian rhythms, genetics, and health

- **What changes our minds?**
 - Toxicants, exposure, and the environment
 - Foods, drugs, and the brain

- **Why dread a bump on the head?**
 - The neuroscience of traumatic brain injury (TBI)

- **Food for thought: What fuels us?**
 - Glucose, the endocrine system, and health

- **What makes honey bees work together?**
 - How genes and environment affect behavior

- **How do small microbes make a big difference?**
 - Microbes, ecology, and the tree of life

Available at: neuron.illinois.edu
Presentation Outline

• Overview of “Why dread a bump on the head?” unit

• Activities:
 – Use CER in a computer game (Lessons 1-3)
 – Examine micrograph data (Lesson 5)
 – Explore data related to sports injuries (Lesson 6)
A Framework for K-12 Science Education

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Asking questions</td>
<td>1. Patterns</td>
<td>Life Sciences</td>
</tr>
<tr>
<td>2. Developing/Using models</td>
<td>2. Cause and Effect</td>
<td>• LS1.A: Structure and Function</td>
</tr>
<tr>
<td>3. Planning/Carrying out investigations</td>
<td>3. Scale, Proportion, and Quantity</td>
<td>• LS1.D: Information Processing</td>
</tr>
<tr>
<td>4. Analyzing & interpreting data</td>
<td>4. Systems and System Models</td>
<td></td>
</tr>
<tr>
<td>5. Using math, information and computer technology, and computational thinking</td>
<td>5. Energy and Matter</td>
<td></td>
</tr>
<tr>
<td>6. Constructing explanations</td>
<td>6. Structure and Function</td>
<td></td>
</tr>
<tr>
<td>7. Engaging in argument from evidence</td>
<td>7. Stability and Change</td>
<td></td>
</tr>
<tr>
<td>8. Obtaining, evaluating, communicating information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What do you know about TBI?

What experiences do you have with TBI?
Why dread a bump on the head?

- L1: What is traumatic brain injury?
- L2: What does the brain look like?
- L3: How does a CT scan help diagnose TBI?
- L4: How to build a neuron
- L5: What happens to neurons after TBI?
- L6: Exploring the data behind brain injury
- L7: What can we tell others about TBI?
Why dread a bump on the head?

• **L1:** What is traumatic brain injury?
• **L2:** What does the brain look like?
• **L3:** How does a CT scan help diagnose TBI?
• **L4:** How to build a neuron
• **L5:** What happens to neurons after TBI?
• **L6:** Exploring the data behind brain injury
• **L7:** What can we tell others about TBI?
The Golden Hour Game

As the “super” medical student, the player must...

Scene 1: EMS
- Respond to 911 call
- Check vital signs
- Assess consciousness

Scene 2: CT Scan
- Review brain anatomy and function
- Interpret CT scans
- Identify TBI location and type

Scene 3: Surgery
- Conduct brain surgery
Assessment Scenes

• After each main scene
• Summative report
 – Data collection
• Multiple choice dialogue
• Open response: scientific explanation (CER)
Claim, Evidence, and Reasoning
A framework for scientific explanation

Claim
- A statement that expresses the answer or conclusion to a question or problem

Evidence
- Scientific data that supports the claim

Reasoning
- The justification that links the evidence to the claim
Play time!

• Desktop icon:
 – Select “New Game”
 – Fill out paper reports and recommendations

• Online: neuron.illinois.edu/goldenhour/
Jump to Scene 1.5

- Refresh browser page
- Click on “Scenes”
- Select “Scene 1.5”
Why dread a bump on the head?

• L1: What is traumatic brain injury?
• L2: What does the brain look like?
• L3: How does a CT scan help diagnose TBI?
• L4: How to build a neuron
• L5: What happens to neurons after TBI?
• L6: Exploring the data behind brain injury
• L7: What can we tell others about TBI?
Objectives:

• Explain that TBI results in two types of cell death: necrosis and apoptosis.

• Compare/contrast the major characteristics of necrosis and apoptosis.

• Describe and explain multiple pieces of evidence of necrotic and apoptotic cell death.
Lesson 5: What happens to neurons after TBI?

What do micrographs of a typical neuron look like?

What is the morphology of cell death?

Which neurobiology technique to use?

What do results from the [second analysis] show us?
Typical Neuron

Figure 1: Typical neuron

Use Figure 1 to answer Questions 1 & 2
1. In Figure 1, identify the following parts of a neuron. Use arrows and labels to indicate where they are.
 - Neuron
 - Nucleus
 - Nucleolus
 - Soma
 - Dendrites

2. The axon and axon terminal are not clearly identifiable in Figure 1. Why might this be the case? Where might they be?

Figure 2: Typical nucleus of neuron

Use Figure 2 to answer Questions 3 & 4
3. Describe the light gray material that can be seen inside the nucleus.
 a) What is it?
 b) Describe the state that it is in.

4. Why is the light gray material in this state?
Lesson 5: What happens to neurons after TBI?

What do micrographs of a typical neuron look like?

What is the morphology of cell death?

Which neurobiology technique to use?

What do results from the [second analysis] show us?
Below are images that show the sequences of neurons undergoing two different types of cell death. In each sequence, the first image (1-A and 2-A) show a typical nucleus. The following three images of each sequence show what was observed to happen to the neurons after a traumatic brain injury. Images 1,2-B and 1,2-C zoom in on the nucleus. Images 1,2-D zoom out to the whole cell level with an arrow pointing at the final stages of the neuron being observed.
Apoptosis or Necrosis?

Which cell death type do each of the morphologies show? Apoptosis or Necrosis? How can you tell?
Lesson 5: What happens to neurons after TBI?

What do micrographs of a typical neuron look like?

What is the morphology of cell death?

Which neurobiology technique to use?

What do results from the [second analysis] show us?
Evaluating Neurobiology Techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Claim</th>
<th>Evidence</th>
<th>Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 Electrophysiology</td>
<td>This technique WILL / WILL NOT provide additional evidence about the occurrence of apoptosis and necrosis in brain tissue after TBI.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 Animal Behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3 Gel Electrophoresis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4 Cell Culturing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lesson 5: What happens to neurons after TBI?

McNeill & Krajcik (2012)
Lesson 5: What happens to neurons after TBI?

What do micrographs of a typical neuron look like?

What is the morphology of cell death?

Which neurobiology technique to use?

What do the gel results show us?
DNA Gel Electrophoresis Results

What happens to cells after TBI?
Why dread a bump on the head?

- L1: What is traumatic brain injury?
- L2: What does the brain look like?
- L3: How does a CT scan help diagnose TBI?
- L4: How to build a neuron
- L5: What happens to neurons after TBI?
- L6: Exploring the data behind brain injury
- L7: What can we tell others about TBI?
Lesson 6: Exploring the data behind brain injury

Objectives

• Locate and analyze data across multiple sources to answer a question.
• Utilize web-based data sources to explore an issue.
• Develop skills to present raw data visually and communicate the data to others.
Lesson 6: Exploring the data behind brain injury

Activities:

• Exploring TBI data using Google Trends
• Using the Project NEURON dataset graphing tool
Exploring Google Trends
Project NEURON

Dataset Graphing Tool

Traumatic Brain Injury

Traumatic brain injury (TBI) covers a wide range of injuries to the brain. Data on TBI is collected from many sources such as hospitals, sporting events, the military, and surveys sent out to individuals that have sustained a head injury. Choose a dataset below that interests you to begin exploring the data behind TBI.

NCAA Injury Surveillance System

The NCAA Injury Surveillance System (ISS) was first developed in 1982 to provide current and detailed injury statistics for college-level athletics. Currently data is collected yearly via an online system where trainers and coaches can submit information about their player's injuries. The information collected by the ISS is used by the both colleges and the NCAA when making decisions and creating new policies for a particular sport. The system is free and periodically the NCAA publishes a summary of their data for 15 men's and women's sports. The data included here is from the most recent summary report in 2004.

NCAA Web link: http://www.ncaaconference.com/iss/iss/index.html

The NCAA ISS data is divided into three subsets, each exploring a different aspect of sports injury:

Data Subsets:

Games and Practices With Associated Injury Rates

This subset of data shows the total number of games and practices, and injury rates reported for a particular sport since data collection was started. Injuries rates are divided out by the time during the season (preseasons, in season, and post season) and whether the injury occurred during a game or a practice. Use the table below to preview the kind of information presented in this dataset:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Games Reported</td>
<td>This is the overall number of games played across all teams reporting injury information to the NCAA ISS since data collection was started for the sport.</td>
</tr>
<tr>
<td>Game Injury Rate per 1000 Athlete Exposures</td>
<td>The rate of injuries sustained out of 1000 exposures to a possible injury during a game.</td>
</tr>
</tbody>
</table>
1. Look carefully at each of the datasets to see what kind of information is available.

2. Find an article that connects with the available data.

3. Ask a question that is relevant to the article and can be investigated by the data.

4. Filter for the relevant data.

5. Generate a graph.

6. Analyze the results
An example

A new study finds that the amount of time NHL players missed because of concussions increased from 1997 to 2004. The report published Monday in the Canadian Medical Association Journal, the largest and most detailed analysis of concussions in hockey, examined physician reports from seven regular seasons. There were a total of 559 concussions during regular-season games, a concussion rate of 5.8 for every 100 players, or an estimated 1.8 concussions per 1,000 player-hours.

"We found some interesting trends — one being a gradual increase in post-concussion time loss over the seven years of study," said lead author Dr. Brian Benson of the Sport Medicine Centre at the University of Calgary's faculty of kinesiology. "That may be due to the concussions being severe or physicians being more conservative in their return-to-play decisions."

Benson said the NHL was looking at the data closely. Of the 529 cases in which lost time was recorded, 31% involved players missing more than 10 days of competition. In 11% of those cases, players continued to play and then later reported symptoms to medical staff after the game.

The highest concussion rate recorded was 7.7 per 100 players in the 2000-01 regular seasons, while the lowest was 4.6 in 1997-98. The last year covered by the statistics — 2003-04 — saw a rate of 4.9 per 100 players.
Discussion

• How can students be supported in the critical analysis of the data and the graphs they generate?
Why dread a bump on the head?

- L1: What is traumatic brain injury?
- L2: What does the brain look like?
- L3: How does a CT scan help diagnose TBI?
- L4: How to build a neuron
- L5: What happens to neurons after TBI?
- L6: Exploring the data behind brain injury
- **L7: What can we tell others about TBI?**
Lesson 7: What can we tell others about TBI?

- Explain the causes and effects of traumatic brain injury (TBI) to family members, friends, and people in the community.

- Design a page in a zine that incorporates past lessons and materials.

- Critically examine and evaluate peer work.
• Pair and share
• How would you use these activities in your classroom?
Acknowlegements

• NIH, SEPA
• University of Illinois

This project was supported by SEPA and the National Center for Research Resources and the Division of Program Coordination, Planning, and Strategic Initiatives of the National Institutes of Health through Grant Number R25 RR024251-03. The contents of this presentation are solely the responsibility of Project NEURON and do not necessarily represent the official views of the funding agencies.
Thanks!

For additional information visit: http://neuron.illinois.edu

E-mail: neuron@illinois.edu